
SIMSS Design Status 1 5/13/99

EOSDIS Test System (ETS)
 for PM-1 Support

Design Status Presentation

May 13, 1999

SIMSS Design Status 2 5/13/99

Review Purpose

Acquaint the user community with our current design status
and provide for feedback into the SIMSS/PM-1

development effort.

SIMSS Design Status 3 5/13/99

Collaborative Development (1 of 2)
(Copied from the SIMSS SDR Presentation)

• ETS work funded by Mission Systems as CSOC SODA
task (G936)
– Work includes:

» development of PM-1 and future EOS simulators
» current support of Terra MPS
» upgrade of SCTGEN for PM-1 & beyond

• Separate SOMO-funded SODA task (G903) to enhance
our suite of spacecraft simulators and test tools
– Called Scalable Integrated Multi-mission Simulation Suite

(SIMSS)
» spacecraft component (SC)
» network test tool (NeTT)

SIMSS Design Status 4 5/13/99

Collaborative Development (2 of 2)
(Copied from the SIMSS SDR Presentation)

• The ETS PM-1 spacecraft simulator
– Referred to as SIMSS/PM-1
– Built on the SIMSS architecture and baseline objects
– ETS developers adding PM-1 specific extensions to

simulator and test tool

SIMSS Design Status 5 5/13/99

Simulator Design for PM-1

SIMSS Design Status 6 5/13/99

Overview

CDBs

PM-1 Ground Station
Module

PM-1 Spacecraft
Module

I ch Q ch
Telemetry
Packets

Commands

IP
Receive

I ch IP xmit

Q ch IP xmit

Telemetry EDUs

Command
Logging

Telemetry
Logging

SIMSS Design Status 7 5/13/99

Telemetry Diagram

Spacecraft

Packet List 1 &
 Format Tables

Packet List 2 &
 Format Tables

Packet List 3 &
 Format Tables

Packet List 4
& Format Tables

(only 1 pkt
list active)

tp tp tp tp tp tpPacket
Contents

Up to 128
tlm

params

Hdr

APID 1 APID 4 APID N APID 2 APID 3 APID 5

Packets

Controller 2Controller 1 Controller 3 Controller 4

SIMSS Design Status 8 5/13/99

Telemetry Data Flow Diagram

TlmGenerator
(active)

TlmDistributor

Virtual Channel

Virtual Channel

Physical
Channel
(active)

DataTransmit

External Data
Physical
Channel

File

TlmGenerator generates the packets
using the PDB and/or other information
available to it, then passes the data to
TlmDistributor.

TlmDistributor is responsible for
filtering and mapping the generated
data to virtual channels.

The Virtual Channel saves the incoming data pending a call from the
Physical Channel. The Virtual Channel provides two calls to the Physical
Channel, one a "gimmeDone" and one a "gimmeNow." The former is a
request for any completed VCDUs and will only succeed if there are any.
The latter is a demand for a VCDU, so the Virtual Channel will have to
complete one with fill data if one is not available.

DataTransmit is
responsible for the
low-level connection
to the outside world.

A Physical Channel is an active
thread that is responsible for
collecting and outputting the data.
The standard PC will get the data
from within the model. An external
data PC will read the data from a
file.

SIMSS Design Status 9 5/13/99

Telemetry Use-Case Description

Refer to
“Use-Case Textual Description for PM-1 Telemetry Generation”

Word document

SIMSS Design Status 10 5/13/99

Command Ingest Data Flow Diagram

EDU
Ingest NettBuffer

Extract CLTU(s) to
SimBuffer

CLTU
Parity check

codeblocks within
SimBuffer

TCdata
Extract Transfer

Frames from
SimBuffer

Transfer Frame
Validate T.F. header

(including FARM protocol)
Update CLCW

AD Cmds
Extract packets

BC Cmds
Unlock and SetVR

BD Cmds
TIE Commands

Send to command
identification s/w

SIMSS Design Status 11 5/13/99

Command Ingest Class Hierarchy

SIMSS Design Status 12 5/13/99

Command Ingest Reports

Refer to
“CMDIngestClassModel.doc”

Word document

SIMSS Design Status 13 5/13/99

Command Use-Case Description

Refer to
“Use-Case Textual Description for PM-1 Command Ingest”

Word document

SIMSS Design Status 14 5/13/99

Use-Case Descriptions

• Other Use-Case Descriptions to be produced later
– command recognition
– end-item command verification
– memory load and dump
– Format Table / Packet List load and switch

SIMSS Design Status 15 5/13/99

Functionality for Release 1.0

• Static telemetry in IP mode EDUs
• Command ingest
• Logging of Command Data Blocks and EDUs
• Maintain GMT and Spacecraft clock
• User Interface

– Display telemetry status
– Display event messages
– Start and stop telemetry transmission

SIMSS Design Status 16 5/13/99

Development Schedule

ID Task Name Duration Start
20 GUIs 15 days Mon 5/10/99

21

22

23 SC/PM-1 Subsystems 35 days Mon 4/12/99

24 Sim/RMM 25 days Mon 4/12/99

25 Telemetry 30 days Mon 4/12/99

26 Commanding 30 days Mon 4/12/99

27 SC Main 15 days Mon 5/10/99

28 GUI 35 days Mon 4/12/99

29

30 Integration and Testing 53 days Mon 4/12/99

31 Integration/Integration testing 10 days Mon 5/24/99

32 System Test Plan 40 days Mon 4/12/99

33 User's Guide 40 days Mon 4/12/99

34 System Test 13 days Mon 6/7/99

35

36 Delivery 0 days Thu 6/24/99 6/24

21 28 4 11 18 25 2 9 16 23 30 6 13 20 27 4
April May June

SIMSS Design Status 17 5/13/99

Dependencies Matrix

ETS PM 1.0

ETS PM 1.0
Test Tool

Telemetry
Data Quality

Module

Command
Generation

Module

IP Module

EOS GS
Module

SC GUI
Implement

SC
Telemetry

SC
Commands

RMM
Implement

SC GUI
Design

NeTT
Server

Implement

NeTT Client
Implement

NeTT Client
Design

NeTT
Server
Design

Key Dependencies
for EOS PM-1

Release 1.0 Delivery

On target for June delivery

Substantially complete

SIMSS Design Status 18 5/13/99

Test Tools

• NeTT
– Telemetry

» Delog and display by EDU
» Eventually use the PDB to display by parameter

– Command
» Log in parallel with SIMSS/PM-1
» Delog and display by CDB
» Later on:

• display by CLTU and Transfer Frame
• Use the PDB to display by command
• Use the PDB to generate valid PM-1 commands

SIMSS Design Status 19 5/13/99

Test Tools, continued

• Command Generator
• EDU Delogger
• Equipment at SOC (Bldg 25) for telemetry logging
• HexEdit

SIMSS Design Status 20 5/13/99

Needs List

• The PDB DFCD
• The PDB as flat files
• EDOS to EGS ICD updates
• preloaded Packet Lists and Format Tables
• Ada symbol to telemetry point physical address mapping
• Mnemonics of command counters that appear in telemetry
• Date for rigorous timing of telemetry packets
• Date for support of multicasting
• Formal points of contact within each organization
• Detailed, prioritized, requirements list for command subsystem

SIMSS Design Status 21 5/13/99

Information Sources

• ICD Between the EOS Common Spacecraft and the EOS
Ground System (EGS) October 15, 1998 (TRW)

• Appendix Z
• TRW IOCs
• The MIT Website

– Question/Answer Matrices
– IOCs
– ICDs

SIMSS Design Status 22 5/13/99

Information Sources, continued

• Flight Software Requirements Specification
• Command Allocation Document
• Telemetry Allocation Document
• EOS Command and Telemetry Handbook for the PM-1

Spacecraft, May 15, 1998 (TRW)

Page 1 of 5

Use-Case Textual Description for PM-1 Telemetry Generation

Telemetry simulation for the PM-1 spacecraft is much different from AM-1. PM-1 telemetry is controlled
by packet lists and format tables, to be explained below.

PM-1 telemetry is sent out by the SIMSS simulator as EDUs. Each EDU will consist of an EDOS Service
Header (20 bytes) followed by one VCDU. The VCDU consists of a VCDU header, and a Data Unit Zone.
The Data Unit Zone consists of one M_PDU Header and 208 bytes of telemetry information encapsulated
in CCSDS packets. See Figure 6.2.1-1 on page 6-2 of the Space-to-Ground ICD for a picture of the VCDU
Data Unit Zone.

The spacecraft contains four controllers (and the AIRS controller, to be added later). Each controller is
responsible for a subset of the total telemetry generated by the spacecraft. For reference purposes they are
the Command & Telemetry Controller (CTC), the G&NC Controller (GNCC), the Power Controller (PC),
and the Instrument Support Controller (ISP).

The following discussion applies to each controller.

As noted above, the telemetry generated by each controller is controlled by packet lists and format tables.
Each controller has four packet lists, of which only one is active at a given time. Which one is active is
determined by operator entry. (TBD – in a later release the simulator may accept a ground command to set
the active packet list.)

Telemetry packets generated by the instruments are not covered here. The amount and type (packet
contents and lengths) have not yet been researched. It is TBD but currently assumed that a fifth controller
will be added later to simulate instrument telemetry.

Packet lists appear to be allocated as follows. One for 16k telemetry (known as housekeeping), one for 4k
telemetry (TDRS SA mode), one for 1k telemetry (TDRS MA mode), and one as backup to be loaded and
used as necessary. It is planned by the FOT that a switch from one packet list to another will be performed
via Stored Command just prior to contact with a ground station or TDRS. SIMSS can simulate this via
operator entry. In the absense of any operator entry, SIMSS should default to 16k telemetry. Since SIMSS
cannot tell from Packet List/Format Table contents which packet list is desired for the data rate selected, it
is the responsibility of the operator to ensure that the correct packet list is selected for the data rate
requested.

The contents of all packet lists and format tables will be supplied by EMOS.

A packet list contains from one to 16 entries. Each entry consists of three fields: (1) the number of the
corresponding Format Table, (2) the Sample Period, and (3) the Slot Number.
• The Format Table defines all of the telemetry data that will go into the packet and thus the packet

length.
• The Sample Period field defines the frequency of transmission of the packet using one of the 10

modulo counters. e.g. the Sample Period field contents will be the number of one of the modulo
counters. The range of the field is 0 to 9.

• The Slot Number is the offset from the zero count of the modulo counter defined by the Sample
Period. Its purpose is to even out the rate of telemetry generation. The maximum size of each packet
list is 48 16-bit words.

Each controller has 16 Format Tables. Each Format Table contains a header and from one to 128 telemetry
point definition entries. The header contains the memory dump flag (more later), a count of the number of
telemetry points defined, and the packet APID. Each telemetry point definition entry contains the access
type and the physical memory address of the data to be collected. The access type tells the controller the
number of bytes (1 to 6) to collect for that telemetry point.

Page 2 of 5

Aboard the spacecraft, the physical memory address is the address in that controller’s memory where the
first, or least significant, byte of data resides. SIMSS will fake this as follows. All objects that are
simulating controllers will have to locate the telemetry node for every entry in all Format Tables. This
involves finding an equality between the entry in the Format Table and the physical address stored in the
telemetry node. An offline program will be used to add the physical addresses to all telemetry nodes when
the PDB is translated for SIMSS use. It was originally thought that the same offline program could be used
to perform the equality matching to determine telemetry mnemonics from physical addresses. However, if
SIMSS achieves the level of fidelity needed to accept a table load of Format Tables or Packet Lists, as it is
understood the customer desires, then the mapping will have to be done in realtime.

We have an external need for the “Ada symbol to physical address map” to be supplied to us by EMOS.

Another question involves telemetry points that are single bit in nature. It is being presumed that one and
two bit flags will be collected together in a single byte or word for transmission. Aboard the spacecraft
these will most likely occupy the same byte of memory. If they (some of the bits) are set/reset by a piece of
hardware that is external to the controller, then there is no problem from the SIMSS point of view. Their
address will be the base address of that byte. If, however, there are bits that are set independently by the
controller, or bits that are given telemetry mnemonics, then the physical address of some mnemonics may
not correspond to the address given in the Format Table but will be in the same byte/word that that address
points to. The existance of these telemetry points is TBD.

It is known that a nearly identical problem was encountered and solved in the development of the Landsat
simulator. Therefore the easiest solution may be to reuse as much of that design and code as possible.

Failing that, alternative solutions are possible. It may be necessary to have the offline PDB translator
examine addresses for all parameters that are not an integral number of bytes in length and group those that
reside at the same “base” address. Perhaps mnemonics will have to be invented to describe the group. The
objective is to make it easy for the online software, which is time constrained, to assemble the bits into a
byte or word to go into the packet, while still making it easy for the operator to set a telemetry point by
mnemonic. Implementation details are TBD.

Next subject: Here is how the modulo counters work. There are ten modulo counters per controller aboard
the spacecraft. They all count in lockstep, incrementing once every 125 milliseconds (msec) and roll back
to zero when their respective modulo counts are reached. The following table gives the ranges of the
counters. Notice that the mod_1 counter doesn’t really count. It merely ticks every 125 msec.

counter range

mod_1 0
mod_2 0-1
mod_4 0-3
mod_8 0-7
mod-16 0-15
mod_32 0-31
mod_64 0-63

mod_128 0-127
mod_256 0-255
mod_512 0-511

Example: If entry #3 of the packet list has 2 as its Sample Period and 3 as its Slot Number, this means that
that packet will be generated every time the mod_4 counter reaches 3.

Page 3 of 5

The following PDL is given as a guide to the coders of controller modules.

// INITIALIZATION
As soon as the current packet list is determined
For every entry in every Format Table referenced by the current packet list

Locate the corresponding telemetry node in the PDB by comparing the physical address to
addresses in the PDB until a match is found.
Output a warning message if no match is found.

EndFor
For each entry in the current Packet List

Initialize the packet sequence counter
Build the static portions of the packet leaving placeholders for any dynamic portions
This includes: Version number, Secondary Header Flag, Type, APID, Seq. Flags, and Packet Data
Length

EndFor

// NORMAL OPERATIONS
Do Forever

Wait until the time interrupt indicating it is time to build the next packet(s)
For each packet to be built

Increment the packet sequence counter
// The sequence counter rolls back to zero when it reaches 16384
Insert the current time into the Secondary Header
Index to the proper Format Table
For each entry in that Format Table

If the corresponding telemetry point has changed
Insert the telemetry value into the packet

EndIf
EndFor
Send the packet to the Ground Station module

EndFor
EndDo

The controller module simulating the CTC will construct and send a TIE packet each time the mod_8
counter recycles to zero.

Aboard the spacecraft, packets are assembled into VCDUs, a CADU sync pattern is prepended, Reed-
Solomon check symbols are attached, randomization is performed, and the result is transmitted. The EDOS
Ground Station element removes the randomization, strips the CADU sync and Reed-Solomon check
symbols from data block, and transmits the VCDU to EMOS. The SIMSS simulator will build EDUs,
bypassing the VCDU building steps. Randomization will not be performed.

The “Ground Station” module will take packets from the controller modules and assemble them into EDUs.
When assembled, EDUs will be sent over the I, Q, or I and Q channels simultaneously, depending upon
what the operator has selected. If I and Q transmission is selected, both channels will contain the exact
same data, transmitted at the same time. Note that this is EPGS 16k mode of operations.

EDUs are built as telemetry packets are received. If the packet received will not all fit into the current
EDU, as much data as will fit is put into the EDU and it is transmitted. The remaining packet data will go
into the next EDU to be built. In this case, the M_PDU First Header Pointer of that next EDU will be set to
one byte beyond the end of the partial packet. i.e. it points to the first packet header in the EDU. Note also
that the maximum packet size is 256 bytes. It can take three EDUs to transmit a single packet.

Page 4 of 5

CLCW EDUs are transmitted at the same rate as data EDUs; one CLCW EDU for each data EDU. If I and
Q channels are both active, the exact same CLCW EDU is transmitted over both channels simultaneously.
There are two CLCWs (see the command ingest description). They are transmitted in round-robin fashion.
eg data EDU and spacecraft CLCW EDU, next data EDU and instrument CLCW EDU, next data EDU and
spacecraft CLCW EDU, next data EDU and instrument CLCW EDU, etc.

We have also been asked to simulate the operation of the “ping-pong” buffers aboard the spacecraft. These
are fixed sized buffers with the following hardware attributes/constraints:

• reside in the CTC and provide an intermediary holding point for packets that are destined for
transmission to the ground

• fixed size of 256 bytes
• Cannot split arriving packets across buffers
• Cannot leave arriving packets on the 1553 bus
• If data arrives to quickly to be removed from the buffers to VCDUs (aboard the spacecraft) the buffers

overflow and data is lost.

This means that the following scenario is possible: If buffer A is partially full and a packet arrives that will
not fit, it goes into buffer B. If the next packet arriving will fit, it goes into buffer A. When EDUs are
being filled, buffer A is emptied before any data is removed from buffer B. This means that data will arrive
at the ground out of time order. That is what the EMOS people want us to simulate so they can test their
software for re-arranging packets by APID.

There are a couple of questions to which we need to get answers: (1) are the buffers circular? If so, at a
high data rate it might be a long time before any data is removed from buffer B. (2) Once all data is
removed from buffer A and the switch is made to buffer B, does new incoming data go into buffer B, or A?

The following PDL is supplied to assist the coders of the “Ground Station” module. This PDL does not
cover the following cases:
• ping-pong buffer simulation
• Q-channel 256k playback
• Fill CADUs – It is not known whether EDOS will remove fill CADUs or send them on to EMOS.

// Initilization – Some is TBD
Construct static portions of EDUs
Do Forever

As packets arrive from the Controllers place them into the current EDU being built
As packets arrive place them into the current EDU until 208 bytes have been filled
If the current packet fills the current EDU

Transmit the EDU on the I and/or Q channels, as per the current configuration
Start a new EDU setting the First Header Flag to point to the first full packet in the EDU

EndIf
EndDo

One unknown in this is whether the Primary VCDU Header is included in the EDU or just the M_PDU
subheader.

Page 5 of 5

QUESTIONS:

Is the assumption of the allocation of packet lists near the top of this memo correct? e.g. one for 16k
telemetry, one for 4k telemetry, etc.

Are there telemetry points that are not an exact multiple of 8 bits in size?

How much of the CADU is preserved in the EDU? It is assumed that only the CADU sync pattern and the
Reed-Solomon check symbols are removed. Is the VCDU header transmitted to EMOS or is it removed by
EDOS?

We are presuming one VCDU per EDU. Is this correct?

Are our assumptions about the working of the ping-pong buffers correct? Are they circular? How is the
switch between buffers made?

It is assumed that SIMSS will have to complete EDUs with fill data occasionally in order to keep the
bandwidth filled. Is this correct?

Under certain conditions the spacecraft transmits CADUs with nothing but fill data, in order to maintain the
bandwidth. Is this correct? If so, does EDOS discard fill CADUs or send them to EMOS?

Page 1 of 6

==
Report: Class Model Report
System: PMCMD
By : equintin
Date : Mon - May 10, 1999

==

#########################
CLD_Class Symbols

#########################

Class : CLTU
Package : PM_CMD

Description: The CLTU class provides processing of the Command Link Transmission
Unit.

ATTRIBUTES:
- - - - - -
Name Type Visibility
---- ---- ----------
tailSequence SimBuffer& Internal
startSequence SimBuffer& Internal
codeblocks SimBuffer& Internal
cltuValidationFlag bool External
lastCLTU SimBuffer [] External
startSeqLength short Internal
tailSequenceLength short Internal

OPERATIONS:
- - - - - -
Name Return Type Parameters
---- ----------- ----------
verifyStartSeq bool ()
Description: Verify that the start sequence is correct.

verifyTailSeq bool ()
Description: Verify that the tail sequence is correct.

verifyLength Unsbyte & ()
Description: Verify that total CLTU length minus the start and tail sequences is
a multiple of codeblock length.

nextCodeblock const UnsByte& ()
Description: Returns pointer to the start of the next codeblock in the CLTU.

numCodeblocks void ()
Description: Returns the number of codeblocks in the CLTU.

addCLTU bool (const SimBuffer& buffer, const
short length)
Description: Copies the next CLTU into the start sequence, codeblock, and tail
sequence buffer areas.

Page 2 of 6

Class : Codeblock
Package : PM_CMD

Description: This class contains methods for processing a codeblock.

ATTRIBUTES:
- - - - - -
Name Type Visibility
---- ---- ----------
codeblock_p UnsByte & Internal
codeblockValidationFlag bool External

OPERATIONS:
- - - - - -
Name Return Type Parameters
---- ----------- ----------
addCodeblock bool ()
Description: Define current codeblock.

verifyParity bool ()
Description: Verify that the BCH parity byte matches the calculated parity.
Also verify that the fill bit in the parity byte is zero.

getTCdata bool (UnsByte &)
Description: Copy the codeblock data into the specified buffer location.

Class : CommandThread
Package : PM_CMD

Description: This class defines the Command processing thread for the Spacecraft
(SC) Module.

OPERATIONS:
- - - - - -
Name Return Type Parameters
---- ----------- ----------
execute void ()
Description: This is the execution loop for the Command thread.

Page 3 of 6

Class : GroundStationMessage
Package : PM_CMD

Description: This class buffers command messages from a Ground Station.

ATTRIBUTES:
- - - - - -
Name Type Visibility
---- ---- ----------
commandMsgBuffer NeTTBuffer& Internal

OPERATIONS:
- - - - - -
Name Return Type Parameters
---- ----------- ----------
ingest SimBuffer& ()
Description: Read in the next command message from the Ground Station interface.

getCLTU SimBuffer& ()
Description: Return a pointer to the next CLTU in the current command message
buffer. If there are no more CLTUs in the buffer, returns a null pointer.

Class : Packet
Package : PM_CMD

Description: This class defines the CCSDS Packets used by PM-1.

ATTRIBUTES:
- - - - - -
Name Type Visibility
---- ---- ----------
version UnsByte Internal
type bool Internal
secHeaderFlag bool Internal
apid UnsWord Internal
seqFlag UnsByte Internal
packetSeqCount UnsWord Internal
packetLength UnsWord Internal
dataZone SimBuffer& Internal
commandCount UnsByte Internal
arithmeticChecksum UnsByte Internal
packetValidationFlag bool Internal

Page 4 of 6

OPERATIONS:
- - - - - -
Name Return Type Parameters
---- ----------- ----------
addPacket UnsByte (SimBuffer& packet, UnsWord
length)
Description: Initializes the packet header field attributes and data zone
pointer.

getAPID UnsByte ()
Description: Returns the APID of the packet

getCmds bool ()
Description: Return the command count from secondary if applicable or zero
otherwise.

verifyChecksum bool ()
Description: Verify the Arithmetic Checksum if present. Returns true if
checksum is correct or not applicable.

verifyPacketHeader bool ()
Description: Verify that packet header fields are valid.

Class : TCdata
Package : PM_CMD

Description: This class is used to collect the codeblock telecommand data
stripped of parity bytes.

ATTRIBUTES:
- - - - - -
Name Type Visibility
---- ---- ----------
tcBuf SimBuffer [] Internal

OPERATIONS:
- - - - - -
Name Return Type Parameters
---- ----------- ----------
addTcData void (const SimBuffer& buffer, const
short length)
Description: Copy the specified bytes from the codeblock into a telecommand data
collection buffer.

getTransFrame const SimBuffer & ()
Description: Returns pointer to the next transfer frame in the telecommand data
buffer.

Page 5 of 6

Class : TransferFrame
Package : PM_CMD

Description: This class defines a generic Transfer Frame.

ATTRIBUTES:
- - - - - -
Name Type Visibility
---- ---- ----------
byPassFlag bool Internal
controlCommandFlag bool Internal
version UnsByte Internal
spare UnsByte Internal
scid UnsWord Internal
vcid UnsByte Internal
frameLength UnsWord Internal
frameSeqCount UnsByte Internal
frameData SimBuffer& Internal

OPERATIONS:
- - - - - -
Name Return Type Parameters
---- ----------- ----------
addFrame void (SimBuffer& buffer, short&
length)
Description: Initialize transfer frame header and data fields to current
transfer frame.

getPacket void (SimBuffer& buffer, short&
length)
Description: Returns a pointer to a buffer and a buffer length corresponding to
the next packet in the transfer frame. Returns null pointer and zero length if
a packet cannot be returned.

Page 6 of 6

Class : VirtualChannel
Package : PM_CMD

Description: This class provides FARM-1 processing for transfer frames in a
given virtual channel.

ATTRIBUTES:
- - - - - -
Name Type Visibility
---- ---- ----------
vcid UnsByte Internal
frameValidationFlag bool External
farmValidationFlag bool External
clcw SimBuffer[4] Internal
validTransFrameCount Double Internal
invalidTransFrameCount Double Internal
lastTransFrame SimBuffer [] External

OPERATIONS:
- - - - - -
Name Return Type Parameters
---- ----------- ----------
addTransFrame bool (UnsByte&)
Description: Defines the current transfer frame for the virtual channel.

IsValidFrame bool ()
Description: Validates the transfer frame header fields.

IsValidFARM UnsByte ()
Description: Validates that the frame sequence number complies with the Frame
Acceptance and Reporting Mechanism (FARM) -1 protocol.

getVCID const Double& ()
Description: Returns the virtual channel identifier for this object.

getCLCW const UnsByte& ()
Description: Returns the contents of the Command Link Control Word (CLCW)

getValidFrameCount const Double& ()
Description: Returns the valid transfer frame count

getInvalidFrameCount const Double& ()
Description: Returns the invalid transfer frame count

==
This Report Generated By GDPro

==

Page 1 of 3

Use-Case Textual Description for PM-1 Command Ingest

In IP mode, commands come from EMOS as Command Data Blocks (CDBs.) A CDB consists of a 24-
byte Ground Message Header (GMH) followed by up to 6000 bytes of command information. The
command information consists of RF Acquisition Sequence data followed by two or more CLTUs. All data
is in NRZ-L

The acquisition sequence consists of a minimum of 128 bits of alternating ones and zeros, beginning with a
one.

The length field of the GMH gives the total length of the message in bytes, including the GMH length.
Therefore 24 must be subtracted from that length to get the actual data length. The fields of the GMH that
need to be validated may be determined from the EDOS-EGS ICD.

After validating and discarding the GMH, the command ingest software must parse the message for
CLTUs.

A CLTU consists of:
• a 16-bit Start Sequence (EB90)
• one to 104 codeblocks (8 bytes each)
• an 8-byte Tail Sequence (C5C5 C5C5 C5C5 C579)

A critical NO-OP is required by the TIE to ensure synchronization. Therefore, the first CLTU will contain
a critical NO-OP command only. It is immediately followed by another CLTU (with any type of
command) with no intervening RF acquisition sequence. It appears that every CLTU is preceded by a
critical NO-OP command CLTU. This may depend upon whether commanding is continuous. If there are
breaks between commands, the byte pattern will be: acquisition sequence, critical NO-OP CLTU,
command CLTU, repeat.

The critical NO-OP CLTU consists of the Start Sequence, one codeblock containing the Transfer Frame
header and NO-OP command, and the Tail Sequence

Notice that CLTUs can be much bigger than AM-1 CLTUs were.

If requested, send the CLTU for display. TBD: Save the latest CLTU for later display? It has been stated
that the last command received should be available for display to the operator at any time prior to shutdown
of the simulator.

If requested, log the CLTU to disk file.

Extract codeblocks from the CLTU and assemble them into Transfer Frames (TF). Perform a BCH parity
check on each codeblock as it is extracted. A BCH error in any codeblock results in the entire CLTU being
discarded and an error message sent to the operator. This parity check may be disabled by the operator.

It appears there may be multiple Transfer Frames per CLTU. Since the Transfer Frame header contains the
VCID, it is possible that Transfer Frames destined for spacecraft and instrument may be mixed.

After the Transfer Frame is assembled compare the actual TF length to the value given in the TF header.
Set the CLCW status if the length is incorrect. This check may be disabled by the operator.

Page 2 of 3

Note that there are two CLCWs. One is for spacecraft commands; the other is for instrument commands.
They are differentiated by VCID. The information in the CLCWs is maintained for the telemetry transmit
thread, which, in the spacecraft, appends a CLCW to every VCDU transmitted. The CLCWs are
transmitted in round-robin fashion – spacecraft, instrument, spacecraft, instrument, etc. (The simulator
telemetry thread will transmit a CLCW EDU with every telemetry EDU sent. See the telemetry description
for more detail.)

Check the following fields of the Transfer Frame header: version, S/C ID*, bypass and control flags*, and
virtual channel ID*. Errors in the three that are asterisked result in status being placed in the CLCW.

Note that there is no Transfer Frame Error Control (TFEC) field. However, many Transfer Frames have an
arithmetic checksum in the secondary header. Details are available in the Space to Ground ICD and in
TRW IOC memos. Error processing is TBD.

There are three types of Transfer Frames. Type AD Transfer Frames contain spacecraft or instrument
commands and are subject to the FARM frame sequence count sliding window check. Note that there are
two frame sequence counters, one for each VCID. Spacecraft Transfer Frames have VCID 0 (zero),
instrument Transfer Frames have VCID 1 (one). Receipt of a Type AD Transfer Frame whose frame
sequence count does not equal the Next Expected Frame Sequence Number (the Report field value of the
corresponding CLCW) result in that Virtual Channel going into lockout mode. When a Virtual Channel is
in lockout, no Type AD Transfer Frames are accepted until a Type BC Unlock command is received.

Type BD Transfer Frames contain TIE Critical commands. (This includes the critical NO-OP described
above.) There may be only one TIE Critical command per BD Transfer Frame.

Type BC Transfer Frames contain Control Commands. There are only two Control Commands, UNLOCK
(unlock the FARM lockout) and SET V(R) (set the Next Expected Frame Sequence Number). Again, these
may have VCID equal zero for spacecraft, or equal one for instrument. There may be only one Control
Command per BC Transfer Frame.

After command ingest, packets are extracted from type AD Transfer Frames and are passed to the
command recognition software.

It appears that there may be multiple packets per type AD Transfer Frame. Since the Transfer Frame
header contains the VCID, all packets in a Transfer Frame will be destined for either spacecraft or
instrument.

 Type BC Transfer Frames are perhaps best handled within the command ingest software as their effect is
local.

Further processing of type BD Transfer Frames is to be determined.

The following are items for the command recognition software to be developed later. (These are placed
here for informational purposes):

1) the ultimate destination of a command packet (spacecraft or which instrument) is determined by the
APID, which is contained within the packet header.

2) It is known that some commands (AIRS has been identified) are longer than 48 bits. These commands
arrive in two parts and must be reassembled before they may be acted upon. The implications for the
simulator depend upon the amount of fidelity aspired to. They are to be determined.

Page 3 of 3

3) All spacecraft and instrument commands are 48 bits (or fewer) long so that they may fit into a Stored
Command Sequence slot. There are multiple spacecraft commands per packet. It is believed that there
may be multiple instrument commands per packet.

Most of the preceding discussion may be found in a slightly different form in Section 5.1.2.4, Command
Processing, of the PM-1 Flight Software Requirements Specification. The PM-1 space-to-ground ICD
(TRW document D22262) contains a wealth of detail in a somewhat confusing format.

NOTICE: There are TRW IOCs that modify the Space-to-Ground ICD.

QUESTIONS:

Is every CLTU preceded by a critical NO-OP command CLTU?

It appears there may be multiple Transfer Frames per CLTU. Is this true? If so, will Transfer Frames
destined for spacecraft and instruments be mixed in a single CLTU?

What error processing should be performed on detection of a checksum error? Alert the operator, of
course. Discard the Transfer Frame?

Is there the possibility of multiple packets in a type AD Transfer Frame?

